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RESONANT MOTIONS OF A SPACECRAFT RELATIVE TO THE CENTER OF 
MASS SITUATED AT THE TRIANGULAR LIBRATION POINT OF THE SYSTEM EARTH-MOON* 

Iu. V. BAPXIN and Iu. G. MARKOV 

Resonant rotational motions of a rigid body situated at the triangular libration 

point of the restricted, circular three-body problem are investigated. The integr- 
able Delaunay-Hill averaging scheme is used to study the long term periodic effects 

in the motion of a body relative to the intrinsic center of mass. 

1. Equations of perturbed motion. We introduce the following Cartesian coordin- 

ate systems: inertial GS1.Z system; rotating Gxyz system with the origin at the center of 
mass of the bodies iMO (Earth) and $l,(Moon) the axes Gr and C,II of which are situated in 

the orbital plane of these bodies, with the Gs-axis coinciding with the line 00, passing 

through the centers of mass 0 and 0, of the bodies M, and M, and pointing towards the 

body ,%r,; .s~!,z system with the origin at the center of mass of the body JM (spacecraft) and 

the axes parallel to the corresponding axes of the Gzyr coordinate system; S&S system the 

axes of which are directed along the principal central axes of inertia of the body r%, and 

A,B. c are the principal central moments ofinertia of the body in. 

We describe the rotational motion of the satellite using the osculating Andoyer elements 

/1,2/ 
G, 0, P, I, 6, h (1.1) 

referred to the rotating Gzyz-axes. Here G is the value of the vector of kinetic moment 

of the rotational motion of the body, 0 is the angle between the vector (; and the Si-axis 

of the body, p is the angle between (i and the normal to the orbital plane, h is the long- 

itude of the ascending node of the intermediate plane P normal to the vector f;,i is the 

angle of natural rotation of the body counted from the plane P, and g is the longitude of 

the ascending node of the S&-plane of the body on the intermediate plane, Using the vari- 

ables (l.l), we write the equations of rotational motion in the following form /1,3/: 

(1.2) 

where c is the force function of the problem. Restricting ourselves to the second harmonic 

of the force function of the problem, we obtain the following trigonometric representation of 

the function L' suitable for further investigation (the summation is carried out over k,, k, 

A- c >.- -&;(M?,*, hzm, Y=&)“, k , (‘,I. _( -_. :-. I!. i ‘1. k, --. n -L 1 
I 3. 12 

The coefficients i,'hl,ti,h3 are known functions of the variables and of the constant dynamicpara- 

meter S, ~3~ denotes the mean orbital motion of the moon and Y is the ratio of the Moon and 

Earth masses. 

2. General integral of 
We use the Delaunay-Hill method 

lite. Assuming that the inertia 

small parameter ci :IA--H1!1B. 

of application of the asymptotic 

Delaunay-Hill averaging scheme) 

developed /4/. 

the Delaunay-Hill averaged equations of motion. 
to investigate the resonant modes of motion of a rigid satel- 

ellipsoid of the body is nearly spherical, we introduce a 

Then the Eqs. (1.2) will assume a standard form (in the sense 
methods) for which various averaging schemes (including the 

have been given a mathematical proof and a perturbationtheory 

In the present paper we consider the case of a resonant rotation of a body for which the 

condition h.,'n, - $%?J*f - (r of commensurabi1ity holds, where 1~~~ and IT, toi denote the unperturb- 

ed velocities of the orbital and rotational motion and i;,' and k,' are the commensurability 
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indices. We introduce the Delaunay anomaly D = k,'g-t k,‘h and construct, following the known 

rules, the equations of the intermediate rotational motion. We have 

dG’ a <u> d0’ 

dt- k,’ 7 , rit = 6'sin t3’ sin 1'1~0s 1 (2.1) 

dD 

dt = - ka’,lo + k,‘G’ 

Here G',P',p',Z',g', h’,D are the elements of the intermediate motion and (U) is the Delaunay-Hill 
averaged force function which has the form 

(U) = eJ"0 ((1 + v) (c.'""0 + Ui,,, CPS 21') + II,,, [cos 2(D - U’) + v cos 2 (D + Ur)] + U,,, [cos 2 (1’ + D - 9) -+ (2.2) 

vcos2(Z’+D-!-Y)]~-U2_2_8[cos2(1’-D~-Y)+vcos2(1’-D--_)]) 

Uooo = - 2 (I-26) [sin2 8' + ( 1-3/, sin? 0') sin’ p’] , U, = sin2 El’ (3sin2 p' - Z), Uoa = Vz sin2 8’ (1 + cm p’)’ (1 - 26) 

u,,, = - vr (I + cOs es) (I _t cosp')2, u*-~-~ = -11, (I - PPs ey (I + c~s P')z, 
1, A>B 

-1, A<B 

In what follows, we shall omit for simplicity the primes accompanying the corresponding vari- 

ables. 

Equations (2.1) and (2.2) cannot be reduced directly to quadratures. This can however 

be done in a particular case, important in the study of synchronous satellites, by introduc- 

ing additional simplifications. In the case of commensurability when k,'= k,‘= 1 , it can be 

shown that the equations (2.1) admit the solution e = ni2, l= 0 (an analog of the plane motion 

in the restricted three-body problem), and equations for the variables G, P, 6, h, D for an in- 

dependent system 
dG aW 

dt=-z- (2.3) 

dg c 1 aw dD c 

dt=- B-T-c&Pap’ -&-'-'&+x 

where, under the simplifications made, 

w = CC') li=o.e=n,? = -U& (2 (1 + v) (2 - 6) cos+ + 6f(v) (I + cos p)* cos 2 (D + Y,)] (2.4) 

1 -- Y 
COS’Y” z -1 

?f(V) ’ 
sin2y =I/s1-, 

0 L f(v) ’ 
i(v)= VI-V + v2 

Equations (2.3) and (2.4) averaged according to the Delaunay scheme, have a complete system 
of first integrals 

s -G cos P ~0 - U'(p. D, 6) = C,, G (1-cosp)=c~) h - & = - ,!,, (1 - 1”) + i -&eo>r%!, Sdl (2.5) 

t” 

Formulas (2.5) represent the general integral of the intermediate problem and contain a com- 

plete set of arbitrary constants C,,CI, h, and g, - For the practical application of the inter- 
mediate rotational motion obtained it is also important that a general solution of the problem 

is constructed, i.e. that the elements G,p,g,h,D are represented as explicit functions of 

time. 

3. Analysis of the resonant motions of a triaxial satellite. We introduce 
the resonant values G* and p* of the variables G and p by means of the formulas c* = nn,,, 
cosp* = 1 - C,/C*, and assume G = G*+ AG. Then, using the first integrals defined by the 

first two formulas of (2.5), we obtain the following approximate expression for G (correct 
to i/T: 

G=G*[1+h-~~(1+C0Sp*)cnu], A=&#$, (3.1) 

Next, using the second formula of (2.5) we obtain the relationship p(D), and this enables us 

to find the solution of the equation describing the Delaunay anomaly. Omitting for brevity 
the derivation, we give the solution of the averaged equations in terms of approximate form- 

ulas (retaining the basic terms of the order -r/F): 
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cosp -:m cosp* + kl/asin?p*cnrr , h - h, = -no (t - to) + oH (t - t,,) - 1/7X znu (3.2) 

sin p = dnu, cosfi = -ksnu, b ; I) + Yy, I II = l/z (1 + cos p*) n, (t - to), H = H, + H, (1 - E/K) 

H,, =++n&(l -~~)(1)6-l)cos~*+6~(~)(1~. cosp*)l, H, = -Au, (1 + cos p*), g -- p - h 

0 < t;* = ((1 + cm p*)‘A - a,, I:! (1 fm v) (:! - 6) cos?p’; + t5f (V) (1 + rosp*y -~ Cl) [(I -t_ cosp’)2;1]-’ < 1 

Here k is the modulus of the elliptic functions in terms of which the motion in question is 

described, C is the reduced energy constant, K and E are complete elliptic integrals of 
the first and second kind and ~n~,cn~~, IIIIU, znll are the elliptic Jacobi functions. 

Solution (3.2) describes a three-dimensional libration of a rigid body relative to the 

center of mass. Such a type of motion takes place when the initial conditions satisfy the 
inequality 

( PO’ 1 < (i + cos p*)l/;i ( sin pn 1 (3.3) 

The resonant motion determined by the formulas (3.2) has a distinctive feature consisting 

of the fact that the vector (; of kinetic moment coincides with the axis of inertia Si) during 
the whole motion. At the same time the vector (; executes a slow secular motion with angular 
velocity of - 0. The secular motion is overlaid with resonant oscillations of amplitude of 

the order of --l/z The trajectory of the vector ti on the unit sphere describes the figure 

8 /2/. 
The rotational motion of the spacecraft has a long term periodicity. The period of its 

resonant oscillations is defined by the formula 

(3.4) 

where T, = 2.7 I lzi, is the period of rotation of the basic bodies, and the period of a preces- 
sional motion of the vector S is T =k:(nHl. We note that the solution of the averaged equat- 
ions can be constructed in the form of series in powers of 1/G to any prescribed accuracy. 

Using the present formulation of the problem we can investigate completely only twotypes 
of resonant motions,namely those with the commensurabilities zn, zzz n, (0) and r10 = nl(D'. Other 
types of commensurability can be studied within the framework of the restricted, elliptic 

three-body problem. 

It should be noted that the resonant motions investigated include the motions generating 

periodic rotations of the spacecraft (rigid body) _ The latter solutions are characterized 
by specified initial values of the Andoyer variables /3/, namely: 

lu = gu = 0, II 12, n, 3n i 2, h, = h,, + kn 12 (k = 0.1, 2, 3) 

1. 

2. 

3. 

4. 

E1=CoS2$'*lr e,=cos2g,=tl, Es = i (k = 0.2), e,=-1 (k=1,3), v1- 
1/v E_ 

i+v J 
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